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Abstract--The effect of wave motion on the performance of the falling film absorbers was analytically 
investigated by solving the combined energy and diffusion equations at a low Reynold's number (Re = 100) 
using an Alternating Direction Implicit (ADI) finite difference method. By comparing the results of smooth 
flow and wavy flow it was found that wave motion improved the heat and mass transfer rates despite using 
a film velocity profile that did not permit mixing. The results supported the findings of other researchers 
who explained the enhancement of mass transfer at low Re by the convection associatedwith the vertical 
component of the velocity. The effects of heat of absorption (Ha) and Lewis number (Le) on heat and 
mass transfer were also studied and it was found that a low value of Ha together with a high Le would 

result in a better concentration variation. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

In absorption refrigeration systems the absorber has 
long been recognised as the most important and criti- 
cal component. Absorbers, in which a thin film of 
absorbent is falling freely over a bundle of horizontal 
or vertical tubes or over cooled plates are widely used. 
They achieve high effectiveness by virtue of the thin- 
ness of the absorbent's flow [1] which maximizes the 
ratio of the surface area to mass flow rate and min- 
imizes the penetration length, hence aids the process 
of both heat transfer to the coolant and mass transfer 
of the vapour refrigerant. 

A good body of literature is available on the nature 
of waves in film flow regimes. Having studied the wave 
motion photographically Stainthorp and Allen [2] 
concluded that wave characteristics depend on the 
flow rate, the physical properties of the liquid as well 
as the distance from the leading edge. Using laser 
technique Salazar and Marshall [3] observed that 
waves were primarily of two-dimensional nature up 
to Reynold's number, Re = 375. The survey of Rotem 
and Neilson [4] suggested that there were three dis- 
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tinct regimes of film flow depending on Reynold's 
number : 

laminar flow without rippling of the free surface at 
Re < 7; laminar flow with rippling (wavy) at 
7 < Re < 250 and turbulent flow at Re > 250. 

In the applications of absorption refrigeration it is 
unlikely to have the values o f  Re exceeding 300 [5] 
and the flows are therefore likely to be laminar wavy 
[4, 6, 7]. Previous researchers [8-10] noticed the sig- 
nificant improvement to heat and mass transfer due 
to the presence of waves in the thin film flow regimes. 
With sufficiently high Reynold's number, the improve- 
ments of heat and mass transfer were the results of 
the mixing effect of the waves [11-13]. At low Re, 
however, where the mixing effects are less pronounced 
or do not exist, further explanation for the improve- 
ments is needed. By assuming that at low Re waves 
would be regular and two-dimensional, Penev et al. 
[14] solves the Navier-Stokes equation for a falling 
liquid film. They found that under such conditions the 
liquid elements travelled along unclosed trajectories 
and there could be no surface renewal (mixing), and 
the improvement in mass transfer was primarily due 
to the vertical component of the film velocity. This 
component, which did not exist in the smooth flow 
regimes, caused the vapour to be convected across 
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NOMENCLATURE 

A dimensionless wave amplitude, 
A = (hma x - ho)/ho 

a(e) coefficient used in equation (53) 
a, ~ coefficients used in equation (54) 
d(e) differential of a(e) with respect to e, 
b, d coefficients used in equation (59) 
c mass concentration of the liquid 

[kg kg '] 
Cp heat capacity [kJ kg ~ =C ~] 
D diffusion coefficient [m z s i] 
Ah specific enthalpy of evaporation 

[kJ kg-'] 
Ha dimensionless heat of absorption 
h0 average film thickness [m] 
h(e) local film thickness [m] 
H(~) dimensionless film thickness, 

H(e) = h(e)/ho 
K thermal conductivity [W m ~ C '] 
Le Lewis number, Le = D/~ 

M number of elements in the X direction 
N number of elements in the Y direction 
n dimensionless wave number ; 

n = 2~h0/2 
Pe Peclet number, Pe = voho/D or 

Pe = (Re) (Sc) 
Re  Reynolds number, Re = F/pv  

Sc Schmidt number, Sc = v/D 
t time [s] 
tw periodical time [s] 
T local temperature [°C] 
v0 average velocity of the liquid [m s ~] 
v, local velocity of the liquid along the x 

axis [m s 1] 
V~ dimensionless velocity of the liquid in 

the direction of x 
v,. local velocity of the liquid along the y 

axis [m s-l] 
V, dimensionless velocity of the liquid in 

the direction of y 
x, y coordinates in x and y direction, 

respectively 

X, Y dimensionless x and y coordinates, 
respectively 

Z dimensionless vertical coordinate in 
the wavy field. 

Greek symbols 
thermal diffusivity [m 2 s ~] 

7, 0 dimensionless concentration and 
temperature, respectively 

F mass flow rate per unit width 
[kg m ..i s-q 

AT dimensionless time step 
AX, A Y, AZ dimensionless step in X, Y and 

Z, respectively 
~: parameters, e. = ( x -  ~Vot)/ho 
2 wave length [m] 
v kinematic viscosity of the liquid 

[m 2 s-  '] 
p density [kg m 3] 
z dimensionless time, z = Dt/h  2 

Zw dimensionless periodical time 
co dimensionless phase velocity. 

Subscripts 
0 initial time condition 
0, 1,2,. . .  index number of elements 
eq equilibrium condition 
i initial space (inlet) condition 
i, j indices for the ith and jth elements, 

respectively 
w condition of the wave or at the wall 
X, Y, Z respective components in the X, Y 

and Z directions or index of partial 
differentials with respect to X, Y and 
Z, respectively. 

Superscripts 
1,2 . . . .  k index for time elements 
* index for half time step. 

the vapour-liquid interface thus improved its transfer 
rate. In investigating a mass transfer problem Besch- 
kov and Boyadjiev [15] employed a finite difference 
method to solve the equation of vapour diffusion into 
a thin liquid film flowing in a laminar wavy manner. 
They used the values computed by Penev et al. [14] 
for the velocity profile (which denied any mixing 
possibility) and wave characteristics, and obtained 
data on mass transfer which agreed well with their 
own experimental work. Ibrahim [16] suggested that 
for flows with Re < 100 a model with regular wave 

characteristics and no mixing should be applied to 
estimate the improvement in heat and mass transfer. 

It was felt that the attribution of improvement of 
heat and mass transfer processes solely to the existence 
of the vertical component of the velocity is not well 
understood and there seemed to be little work done 
on problems of combined heat and mass transfer in 
thin film wavy flow at low Re. The data of Penev et 

al. [14], who devised a velocity profile that denies the 
possibility of mixing [15], was used in this inves- 
tigation to evaluate the heat and mass transfer pro- 
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(a) Wavy flow 

Fig. 1. The wavy and smooth flow domain. 

x 

fo) Smooth Flow 

cesses associated with the absorption of a water vap- 
our by a thin wavy laminar film of LiBr solution 
flowing downwards under the action of gravity. 

ANALYSIS 

For a thin wavy liquid film flowing down a vertical 
(or inclined) surface under the system of coordinates 
shown in Fig. 1 (a), the diffusion and energy equations 
[17] can be written respectively as 

Oc+G~x 0c D(Ozc 02c~ 
c3 t +Vyfffiy = \ 0x2 + 0y2, ] (1) 

OT OT OT fO2T 02T\ 
+ Vx ~ + vy-~y = e/7-;-, + -Z-7). (2) 

O-t- \ox- cy - /  

Initial and boundary conditions 
To solve equations (1) and (2), the initial and 

boundary conditions must first be obtained. The 
initial distributions of concentration and temperature 
are assumed to be of the smooth flow, i.e. 

at t i m e t = 0  c=c0(x ,y )  and T=T0(x ,y ) .  

The boundary conditions at inlet are assumed to be 
well mixed and uniform, i.e. 

a t x = 0  c=c~ and T = T i .  

For the y coordinate the concentration boundary con- 
dition at the wall reflects the impermeability of the 
solid wall, i.e. 

0C 
a t y = 0  ~yy=O 

and the temperature is assumed to be equal to the wall 
temperature, i.e. 

T=Tw.  

At the liquid-vapour interface the boundary con- 
ditions assume that the absorbent is saturated and can 
be approximated by the linear dependency of con- 
centration and temperature [16, 18] as shown below: 

a ty  = h(e) T=  ac + b (3) 

where a and b are constants. 
At the interface, if the sensible heat transfer, is neglec- 
ted, the heat flux is proportional to the rate of vapour 
absorption [16], i.e. 

00 0~ 
a t y = h ( e )  ~y = Ha~y 

where O, V and Ha are the dimensionless temperature, 
concentration and heat of absorption defined respec- 
tively as : 

c-- ci T-- Ti 
~ -  O - - - -  

Ceq - -  C i Teq  - -  T i 

(pD Ah~( Ceat--Ci 

H a = \  K ]\T,q-Ti]" 

Smooth flow (initial condition) 
It is necessary to find the initial distributions of 

concentration Co(X,y) and temperature To(x,y) 
defined previously not only as initial conditions of the 
time dependant wavy distributions, but also because 
both smooth and wavy distributions will be compared 
to each other to assess the relative improvements in 
heat and mass transfer brought about by the actions 
of waves. 

The diffusion and energy equations for a smooth 
flow under the same conditions and system of coor- 
dinates, shown in Fig. 1 (b), as those of the wavy flow 
described earlier, can be written as : 

0c 0% 
G ~x = D --0y z (4) 

0T 02 T 
(5) V X ~ x  = O~ Oy 2 

By defining and using the following dimensionless 
properties 

x y , vx 
X=eeh  o, r= o Vx=--Vo 

equations (4) and (5) 
dimensional form as : 

can be transformed into non- 

07 02~ 
Vx OX 0 y2 (6) 

00 1 020 
Vx OX - Le 0 y2 (7) 

The liquid domain is divided into a mesh Of small 
elements with the grid points designated by i and j 
along the x and y axes, respectively, where i = 1, 2, 3, 
. . .  M and j  = 1,2, 3 . . . .  N. An explicit finite difference 
scheme was used to approximate the differential equa- 
tions (6) and (7), which accordingly becomes 
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. - -  1 0 

where 

AX AX 
Rc = and RT -- 

V,.(A 1O: LeV~(  A Y)" " 

Explicit finite difference schemes are simple to con- 
struct and solve, but have the drawback that AX and 
A Y have to be chosen to satisfy certain stability cri- 
terion;  Rc and RT must everywhere be no greater 
than 0.5 which implies a smaller mesh size than in the 
case of  implicit methods, hence a longer calculation 
time. This is not  a disadvantage in this particular 
problem because, as mentioned earlier, the smooth 
distributions of  concentration and temperature will 
be used as the initial condition for the wavy dis- 
tribution and will be compared to it to obtain the 
relative improvement,  thus the mesh size has to be the 
same in both cases, and with the complicated stability 
requirements of  the wavy problem, its mesh size is very 
small anyway. Therefore using the implicit method to 
increase the mesh size of  the smooth flow domain 
would not be of  any benefit. 

Since RT = R c / L e  and Le is less than unit, therefore 
RT > Rc, and consequently if RT is no greater than 
0.5 neither will be Rc. To calculate the mesh size it is 
noted that since Y = y/ho and in the non-wavy flow : 

.]"max ~ h0 

.}'max 
then Ym,x- -- 1 

h0 

and so 

1 
A Y = - - .  

N 

Following Penev et al. [14] a half-parabolic velocity 
profile is assumed 

V,. - G _ ~(2 Y -  r2). 
U0 

The maximum possible value of  RT is given by 

AX 
RTm~x = 

(Le V~lmi m (A Y)-" ) 

where V,-~mi,) = ~ (2AY-(Ay)2) ,  occurring at the 
element adjacent to the solid wall. Equating RVm,~ to 
0.5 enables the calculation of  AX which produces a 
stable solution, i.e. 

AX = 0.75Le(2(A Y)' - (A y)4). 

S m o o t h  f l o w  (boundary conditions) 
The boundary conditions for the non-wavy flow are 

the same as those of  the wavy flow. They are written 
for the dimensionless domain as follows : 

a t x = 0 ,  X = 0 ,  c = c i ,  7 0 j = 0  

and T =  T~, Oo, j=O 

&' ( % - c 0  07 
a t y =  0, Y = O ,  - - 0  

~?y h0 0 Y 

i.e. ~7/? Y = 0, or in finite difference form 

(7,.i - ",'i,0) 
- -  0 .  

AY 

It was mentioned earlier that the temperature of  the 
liquid element at y = 0 is taken to be equal to the wall 
temperature (Tw). For  simplicity Tw was assumed to 
be constant and equal to T,, i.e. isothermal cooling. 
The cooling mode makes no difference to the relative 
result as it is to be applied to both smooth and wavy 
flow. Therefore 

at Y=0,0i ,0  = O o . j = O ~  = 0  

and at y = h0, Y = 1 equation (3) states that 

7"= a c + b .  

This equation can be transformed into the dimen- 
sionless form [16] as: 

7 + 0  = 1 

and is written for the interface as : 

";i,x + O,,x = 1. 

Also at the interface 

?0 = Ha  ~ "  
~ Y  ( Y  

be written in dimensionless interface which can 
notation as : 

Oi,x - Oi..,~'- , = Ha(Ti,x -- ~i,N I )" 

Solving the finite difference equations (8) and (9) gives 
the distribution of  concentration and temperature in 
the smooth film which will be used as the initial dis- 
tribution (t = 0) for the wavy problem. Both solutions 
of smooth and wavy will later be compared. 

W a v y  distr ibution 
The main difficulty in solving the problem of the 

wavy flow is that the film surface is rippled and so 
the film thickness h(e) varies temporarily as well as 
spatially along the film length. This difficulty was over- 
come by introducing a new variable Z, where 

Z = ~  0 ~ < Z ~ < I .  

Hence the wavy domain ( x , y ,  t) could be transformed 
into, in effect, the smooth domain (x, Z, t). The fol- 
lowing notations for partial derivative are used for the 
subsequent mathematical  manipulation of  the trans- 
formation. 
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X, , ~f 
~xxf ( y t) = 

Therefore 

and 

where 

I~ X, and -~xf( Z, t) = f'~, etc. 

(lO) 

d f  = f ;  dx + f ~  dZ  +f~ dt (! 1) 

eZ OZ ~bZdt 
d Z =  ~ x d X + - ~ y d y +  at " (12) 

Therefore 

, , O Z  , O Z  , , O Z  

(13) 

and equating the coefficients of equations (10) and 
(13) one obtains 

Of '~ c?Z 
~x = f + f'Z ~x 

of o z  
Oy - y'~ Oy 

Of . . . .  OZ 
07 = : '  +:~ T{ 

Oaf . . . .  OZ ., {OZ'~ 

/ , ,, OZ 
+ t f " z  + f z z  ~x , / O Z \  \ OZ 

Since nei therf~ nor OZ/Oy is function of y and OZ/Oy 
is only a function of x and t, therefore 

z~-f iy)y=O and ~-y-y z = 0 

and 

oaf f ., ozk f ., azk oz  .,, / o z V  

Equations (1) and (2) can both be expressed in a 
general form : 

~t+v~ o f . o f  ( o2f 02f~ (14) -~x + Vy ~y = Constant ~ + Oy2 ] 

wheref i s  the concentration function, c, and the con- 
stant represents the D in the diffusion coefficient in 
the diffusion equation, equation (1), o f f  is the tem- 
perature function, T, and the constant refers to ther- 
mal diffusivity, ~t, in the energy equation, equation (2). 

Substituting for the derivatives, the left-hand side 
of equation (14) becomes 

of, of. of ~ ~-v.~ tV, Vyy 

d Z ,  
= f~ + v>f'>, + ~ t f z .  (15) 

Using the 2nd order derivatives the fight-hand side of 
equation (14) gives 

o~ + oal . . . . .  oz  
Ox a 0),---7 = Jx. + 2f  xz 7x 

~,, {OZ\ 2 ,, IOZ\ 2 , / O Z \  
+ zzt ) ,,6, 

Equating the right-hand sides of equations (15) and 
(16) produced the general diffusion and energy equa- 
tion in the transformed domain (x, Z, t). 

Of. Of .  dZ  of 
-~ -t- v ~' ~x "t- d t O Z 

02f 02f OZ 
= Constant ~ x  z + 2 ~ - f f ~  Ox 

oV (oz~ a oV lozv  of  o2z~ 
+ ~ t ~ )  +~kTy) + 0z o : )  (17) 

By defining a dimensionless time z as ~ = Dt/hg, equa- 
tion (17) can be transformed into non-dimensional 
form, written as : 

of of + ( a z  s(OaZlOX~'~h of 
o-7 + vx ~ t d r - t - ~ :  ) ) -g-i 

= ~ ( ±  ov ( 1 (OZlO_Xy] ov 
tee a ox 2 + -h~: +t,--g;-e ) )~-~ 

o~i OZlOX'~ 
+ 2 0 - ~ -  z Pe a ) (18) 

where Pe is defined as Pe = hovo/D, B = constant/D 
and H(e) is the non-dimensional film thickness. 

In the particular problem concerned Peclet number 
is large (Pe = 25.0E8) and therefore equation (18) can 
be simplified by neglecting terms containing Pe a in the 
denominator, and it becomes 

__Of Of . (dZ'~ Of = B(H(e) a2f~ 
o~ + vx ~ • t , ~ )  ?2 oz  ~) 

By expressing B = D/D = 1 and B = e/D = 1/Le the 
diffusion and the energy equation, in non-dimensional 
form, can be written respectively as : 

Oy 03' d Z  03, 1 027 (19) 
-~ + V x ' ~  + dz OZ = H(e) 2 0 Z  2 
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30 30 dZ 30 1 1 320 
+ V~ ~X + dv 3Z  Le H(e) 2 3Z  ~ (20) 

SOLUTION 

To obtain the solution for equations (19) and (20) 
the quantities V~, dZ/dT and H(e) must be first evalu- 
ated. The velocity profile V~ across the Y axis is cal- 
culated from the velocity profile of Penev et al. [14]  

V, = a l ( s ) Y + a 2 ( s )  Y2 V, = ~ ak(~:)Y k (21) 
~ = 1  

where, 

al (e) = al.0 +aLl  sin(m) ~-al, I COS(n~) 

+a~.2 sin(2n~:)+&.~ cos(2m) (22) 

a2 (s) = az.o + a> ~ sin(m) + a2.1 cos(m) 

+ a2.2 sin(2m) + d2.2 cos(2m:) (23) 

where e is expressed in non-dimensional  form as 

s = = ( X -  (oz) Pc. 
h0 

Dividing equation (12) by dt gives 

dZ  ~Z 3Z 3Z 
dt - 3t + v ,  ~vx +v~. ~?v (24) 

By defining V,., the non-dimensional  velocity in y 
direction, as 

Pe 
V, =- - i , , .  

UO 

and substituting into equation (24) together with the 
other defined non-dimensional  quantities gives 

d Z D  c~ZD Vo 3Z . v0 ?Z  

d~ ho ~ - 3~ ho ~ + W p~,~ ~ + v., ~ ; / - f  

multiplying by h2/D one obtains 

dZ  3Z  3Z 3Z 
- & + V. ~ + V,.77.. (25) 

dz 

and since 

therefore 

]2 | ,  
Z = - : - -  and Y =  

ho 

3Z  1 

3 Y - H0:) 

3H(e) _ y . - -  
3Z  & 

- (26) 
3"~ H(g) 2 

The local film thickness is given by Penev et al. [14] 
a s  

h(e) = ho [1 + A sin(m) + b 2 sin(2ns) 

+ d 2 cos(2ns) + ' "  + b i sin(jne) + djc°s(Jm)]- 

When divided by h0 and truncated at j = 2, H(e)  is 
obtained, i.e. 

H(e) = 1 + A sin(ne)+ b2 sin(2ne)+ d2 cos(2m) (27) 

where 

(hma x - h0) 
A -  

h0 

Differentiating equation (27) with respect to ~ gives 

?~ - nA cos(ne) ~ +2nb2 cos(2m:) 

& 
- -  2nd2 sin(2ne) (28) & 

where &/3r = - a)Pe. 

Substituting equation (28) into equation (26) gives 

?Z YneJPe 
- [A cos(ne) + 2b2 cos(2n~) - 2d2 sin(2m:)]. 

~T H(e,) 2 

The partial derivative ?Z/~X  is evaluated by differ- 
entiating Z = Y/H(e) with respect to X, i.e. 

~H(e) 
Y 

~Z ~X 

/~X H(e,) 2 

A final expression for the derivative is obtained as 

(?Z - YnPe 
- H(e,)~ [A cos(m,) 

+ 2b2 cos(2nE) - 2d2 sin(2ne)]. 

The normal component  of the velocity V~. is computed 
by first writing the continuity equation : 

&,, ~t,, - v0 g V, v0 3 V~ 
=-- m = O  or 
cx  + 3v Peho ?X Peho ?,Y 

therefore 

(in dimensionless form) 

using equation (21) and integrating gives 

V,. ~ dk(~) y~+ 1. 

The coefficient dk(e) is obtained by differentiating 
equations (22) and (23) with respect to e. Substituting 
the partial derivatives of Z, and Vx, and Vy in equation 
(25) enables dZ/dz to be evaluated. H(s) is calculated 
from equation (27). The constants of equations (22), 
(23) and (27) together with the wave parameters n, oo 
and ~ as calculated by Penev et al. [14] and quoted by 
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Beschkov and Boyadjiev [15] are used in this study. 
The boundary  conditions remain the same as in the 
case of smooth flow, while, as mentioned before, the 
solution to the smooth flow problem becomes the 
initial distribution of the wavy flow problem. 

The finite difference method 
An implicit finite difference method was used to 

approximate equations (19) and (20). This was chosen 
to be the Alternating Direction Implicit (ADI) 
method of [19]. This method amounts  to taking a half 
time step Az/2 using backward difference approxi- 
mat ion which is implicit in the X-direction only using 
the past values in the Z-direction along the grid line 
X = X, The next step of the ADI  method counters the 
bias introduced above by using a backwards difference 
approximation that is implicit in the Z-direction only, 
using the past values in the X-direction along the grid 
line Z = Z: to advance the final half step in time. Thus 
a full time step is completed. 
Putting 

d Z  
El = I/, F2 =-~-z and 

equation (19) becomes 

1 
F 3 - H(g) 2 

03) 33) 633 ) (~23) 
8--~ + F1 ~ + F2 ~-~ = F3 - -  (29) 

0Z 2 

and applying the ADI  method, equation (29) becomes 

(y,.* -- yik, j) F, , , F2 k 
a~ + 2-,CY(~'+":-~'-"9+ 2-zC2 (3)''j+'-3)'~"-'1 
2 

F 3  k k k 
( 3 ) i , j l  l )  ( 3 0 )  - 23)i,j + 7/,j+ 

(AZ) 2 

where * denotes the intermediate values calculated at 
t i m e ,  = ~k + (Az/2). 

Putt ing 

Fm 2 
F 4 -  F s = =  - F6 = - F 4  

2AX /xT 

and rearranging equation (30) gives 

F ,* ± F  ,* ±F.  ,* = FTTij-I +F83)i/+ 9~j+1. 4/1i-- I j T  5 [ i ,  j T  6J' i+ 1 j k k F ,  

(31) 

Equat ion (31) is the first step of the ADI  method and 
is used to calculate all the intermediate values 3)*. The 
procedure by which this is accomplished is referred to 
as the "horizontal  sweep". In particular for each fixed 
index, j ,  1 ~<j ~< N -  l, the tri-diagonal system (31) is 
solved for 3)*j, 3)*/,. * • , ..,YM-I,j. Thus in order to c o r n -  

plete a horizontal sweep an N -  1 tri-diagonal systems 
each of the size M - 1  is solved obtaining 
( N -  1 ) ( M -  1) intermediate values. 

Upon  completion, the second and final step of the 
ADI  method known as the "vertical sweep" could be 
executed. Equation (29) can be written as : 

(3)ikj 1 __ 3) ,*j) F, 

a~/2 + 2--~ ( : + ' u - : - ' ' j )  

F2 k+l k+l F3 k+l 
~-- ~ 3 ) i , j + l ]  +~-~(7i../+,--3)i,j-,) ( _ ~  (7i,j_ 1 _ 23)~+, _ k+l,~ 

which is rewritten as 

k + l  k + l  k + l  -- F73)iu- 1 + Fi 03)i.j -- F93)IU+ j 

- F ~'* ± F  '* E " *  ( 3 2 )  - -  - -  4 ¥ i - -  I , j  T 5 ~ i , j  - -  6 I t +  I,/" 

Equation (32) is an M -  1 tri-diagonal system which 
has N - 1  equations. So for each index i 
(1 ~< i ~< M -  1), equation (32) is solved for the final 

k + l  k + l  k + l  values of 7i, 1 , 3)i,2 • + At. The same , . .  • ,3)~,N_l, at'~ = 
procedure is applied to the energy equation whereby 
a final pair of  equations is obtained 

• 0 *  0 *  Ft4Oi_l,j+Ft5 ;,j +Ft6 i+l,j 

= Ft70~iO-1 +FtaO~i,j-FtgO~i,/+l (33) 

-- Ft70~i,f__ll + FtloOl~i, +1 -- Ft90~i++ll 

- -Ft4Oi+l,:+FtsOi,:-Ft6Oi+lu (34) 

dZ F3 
Ft2 = ~7  Ft3 = ~e Ft4 = F, 

Ft5 = F5 E l  6 = --g6 

where 

[ Ft2 2Ft3 
Ft7 = ~ 2 ~  + (AZ)2J 

( 2 2Ft, .~ = :. Ft3 Ft2.'] 
Fts = Az (AZ)2) Ft9 \(AZ)2 2AZJ 

(Azz 2Ft3 Ftlo = + ( ~ - ~ j .  

Gauss elimination technique was used to solve the tri- 
diagonal systems (31)-(34). At a given location, X, 
both 7 and 0 oscillate with time at a fixed amplitude 
and with the same frequency as that of  the wave. The 
amplitude of oscillation diminishes with increasing X 
as the driving forces Ceq--C i and T e q -  T i decrease with 
the distance. The amplitude of the concentration vari- 
ation is larger than that of  the temperature as the 
effect of  waves on mass transfer is larger than their 
effect on heat transfer. 

RESULTS AND DISCUSSION 

Improvement of concentration and temperature 
The results present a comparison between the 

smooth and wavy flows in terms of  the non-dimen- 
sional concentration (7) and temperature (0) averaged 
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Fig. 3. Comparison of wavy and smooth concentration 
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Fig. 4. Comparison of wavy and smooth temperature 
(Re = 100, Ha = 0.1, Le = 0.01). 

over the film thickness [h(e,) in the case of wavy flow 
and h0 in the smooth film] and over a complete non- 
dimensional periodical time (Zw) which is calculated 
as follows : 

The wavelength (2) and the wave velocity (vw) are 
respectively expressed as 

2nh0 
2 -  and Vw=~V0 

n 

the periodical time, tw = 2/v,. and (in dimensionless 
form) 

Dtw 2n 

ho nPe~ 

% was divided into a one hundred small Ar's and 
the solution was averaged over the whole period. To 
reduce computer memory space requirement, the solu- 
tion was not obtained as a continuous field and the X, 
Z, z domains were divided into segments (Fig. 2) along 
the X-axis with only the values at the end of each 
segment stored and used as inlet conditions to the next 
one. The Reynold's number and the Schmidt number 
were taken to be 100 and 500, respectively. 

Figures 3 and 4 show the relative improvements of 

mass and heat transfer of the wavy flow over the 
smooth one, i.e. a higher comparative concentration 
and lower comparative temperature. The improve- 
ment is greater in concentration than in temperature, 
which agrees with the published data [4, 20]. This is 
because the mass is transferred across the gas-liquid 
interface where the waves have greater effect, while 
heat is transferred across the solid wall from the solu- 
tion to the cooling medium where the effect of waves is 
at minimum. The concentration curves rise gradually 
towards equilibrium while the temperature curves rise 
steeply at the beginning due to the rapid absorption 
and the heat release associated with it, then they start 
to cool down after reaching a maximum and decay 
gradually towards the equilibrium. 

EJ]bct of the heat of absorption and Lewis number 
It is evident from Figs. 5 and 6, respectively that 

the concentration improves when decreasing the heat 
of absorption, Ha, and increasing the Lewis number, 
Le. Figure 7 shows that the temperature increases with 
increasing Ha, while Fig. 8 shows that it reacts in a 
mixed way to Le; the non-dimensional average tem- 
perature increases then decreases with non-dimen- 
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Fig. 8. Variation of temperature with Le for wavy flow 
(Re = lO0,Ha = 0.1). 

sional length. Figure 8 shows that the curve with the 
lowest Le value of 0.01 has the greatest gradient. This 
is to be expected since liquids with low values of Le 
have higher values of thermal diffusivities (at constant  
diffusion coefficients) and therefore the change in tem- 
perature of such liquids is more pronounced.  The tem- 
perature reaches different peak values at different Le 

numbers. At low Le number  the peak temperature 
occurs closed to the inlet of  the absorber. In practice 
higher concentrations and lower temperatures are 
desirable which suggests the desirability of lower Ha 
and higher Le. It  has been pointed out [21] that the 
refrigeration capacity is more strongly proport ional  
to Ha than it is to Le and it is dependent on Le 
only by the dependency of Le on the concentration 
variation. Reference [21] concluded that although 
increasing Ha will decrease the concentrat ion vari- 
ation its net effect will be to increase the refrigeration 
capacity. 

The independent increase and decrease of Ha and 
Le is not, in fact, possible as they are both properties of 
the absorbent at given conditions and are, therefore, 
interrelated, as indicated by the following expression. 

Ah ceq - ci 
Ha - Cp Teq --~i  Le. 

It implies that a higher Le will produce a higher Ha, 
which is fortunate from the refrigeration point of view 
since, in the light of the findings of Ibrahim and Vin- 
nicombe [21] and the findings of this work, a higher 
Ha and a higher Le are desirable. 

CONCLUSIONS 

The analysis of the effect of absorbent 's  wave 
motion on the heat and mass transfer supports the 
hypothesis that at low Reynolds number  the improve- 
ment of concentration and temperature is not  due to 
the mixing effect of  waves, since the velocity profile 
employed denies such possibility, but  rather due to 
the vertical component  of velocity (which is absent in 
smooth flows) and the convection associated with it. 
The effects of Ha and Le on the mass and heat transfer 
were studied and it was found that a lower Ha and a 
higher Le result in a better concentration variation. 
However, for a higher refrigeration capacity a higher 
Ha is recommended. 
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